===== TeX記法 =====
==== 例 ====
$$ e^{i \pi} + 1 = 0 $$
e^{i \pi} + 1 = 0
$$ \tan (\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} \hspace{1em} (複号同順) $$
\tan (\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} \hspace{1em} (複号同順)
$$ \sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{1}{2}n(n + 1) $$
\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{1}{2}n(n + 1)
$$ \varepsilon(n) = \begin{cases} 1\, & (n = 1) \\ 0\, & (n > 1) \\ \end{cases} $$
\varepsilon(n) = \begin{cases}
1\, & (n = 1) \\
0\, & (n > 1) \\
\end{cases}
$$ \left(
\begin{array}{ccccc}
a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\
\vdots & \ddots & & & \vdots \\
a_{i1} & & a_{ii} & & a_{in} \\
\vdots & & & \ddots & \vdots \\
a_{n1} & \cdots & a_{ni} & \cdots & a_{nn}
\end{array}
\right) $$
\left(
\begin{array}{ccccc}
a_{11} & \cdots & a_{1i} & \cdots & a_{1n}\
\vdots & \ddots & & & \vdots \
a_{i1} & & a_{ii} & & a_{in} \
\vdots & & & \ddots & \vdots \
a_{n1} & \cdots & a_{ni} & \cdots & a_{nn}
\end{array}
\right)
==== 記号 ====
^ コマンド ^ 出力 ^
| \varepsilon | $\varepsilon$ |
| \varphi | $\varphi$ |
| \mathbb{N} | $\mathbb{N}$ |
| \overline{x} | $\overline{x}$ |
| \vec{x} | $\vec{x}$ |
| \nabla | $\nabla$ |
| \partial | $\partial$ |
| lim_{n \to \infty} | $lim_{n \to \infty}$ |
| {}_nC_r | ${}_nC_r$ |
| \sqrt[n]{x} | $\sqrt[n]{x}$ |
| \sum_{b=1}%%^%%{N} | $\sum_{k=1}^{N}$ |
| \iint_{a}%%^%%{b} | $\iint_{a}^{b}$ |
| \idotsint_{a}%%^%%{b} | $\idotsint_{a}^{b}$ |
| \neq | $\neq$ |
| \sim | $\sim$ |
| \simeq | $\simeq$ |
| \approx | $\approx$ |
| \fallingdotseq | $\fallingdotseq$ |
| \equiv | $\equiv$ |
| \geq | $\geq$ |
| \geqq | $\geqq$ |
| \leq | $\leq$ |
| \gg | $\gg$ |
| \ll | $\ll$ |
| \times | $\times$ |
| \div | $\div$ |
| \pm | $\pm$ |
| \mp | $\mp$ |
| \oplus | $\oplus$ |
| \ominus | $\ominus$ |
| \otimes | $\otimes$ |
| \oslash | $\oslash$ |
| \circ | $\circ$ |
| \cdot | $\cdot$ |
| \bullet | $\bullet$ |
| \in | $\in$ |
| \ni | $\ni$ |
| \notin | $\notin$ |
| \subset | $\subset$ |
| \supset | $\supset$ |
| \subseteq | $\subseteq$ |
| \nsubseteq | $\nsubseteq$ |
| \subsetneq | $\subsetneq$ |
| \cap | $\cap$ |
| \cup | $\cup$ |
| \emptyset | $\emptyset$ |